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Meta-decisions are decisions about
how decisions are made. Many recent
models in different domains have con-
ceptualized meta-decision dilemmas
as pitting more carefully computed
decisions against automatic defaults,
including goal-directed versus habitual
responses, deliberative versus heuris-
tic choices, and controlled versus
impulsive actions.

These recent models show that many
puzzling decision patterns as well as
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Many different situations related to self control involve competition between two
routes to decisions: default and frugal versus more resource-intensive. Exam-
ples include habits versus deliberative decisions, fatigue versus cognitive effort,
and Pavlovian versus instrumental decision making. We propose that these
situations are linked by a strikingly similar core dilemma, pitting the opportunity
costs of monopolizing shared resources such as executive functions for some
time, against the possibility of obtaining a better outcome. We offer a unifying
normative perspective on this underlying rational meta-optimization, review
how this may tie together recent advances in many separate areas, and connect
several independent models. Finally, we suggest that the crucial mechanisms
and meta-decision variables may be shared across domains.
phenomena of self-control and conflict
can be understood as rational arbitra-
tion that balances the potentially better
outcomes of more considered deci-
sions against the higher costs of such
consideration.

A central cost of deliberation across
many seemingly separate domains
has been proposed to be the oppor-
tunity cost of occupying shared
resources over time. Common deci-
sion variables and mechanisms may
guide these allocations across many
such domains.
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The Choice To Exercise Control
Smart people constantly fail to ‘do the right thing’. We procrastinate, eat unhealthy food, and
generally defeat our own goals. But why? Such behaviors are particularly vexing for influential
normative and decision theoretic perspectives on cognition, which conceptualize decision
making as maximizing long-term obtained reward. If we are optimizing, why should we ever
be ‘of two minds’ about anything?

We advance here a unifying normative perspective on a range of situations involving conflict or
self-control (very broadly construed), including automaticity, deliberation, and habits; Pavlovian
reflexes; emotion regulation; fatigue and cognitive effort; and learned helplessness (see
Glossary). The linking idea, versions of which have recently been proposed more or less
separately in several of these sub-areas [1–5], is that true optimization requires ‘meta-optimi-
zation’ that accounts for the benefits and costs of the internal processes employed in making
decisions. Putting aside context-specific details, the underlying decision architecture and trade-
offs involved are strikingly similar, and in each case rely on balancing the benefits of higher
rewards (from making a more optimal decision) against the increased costs of arriving at that
choice [1–9]. Thus, the decision is not only over the possible outcomes but also over the nuts
and bolts of the internal decision processes themselves (or, ‘setting the switches’ [10]). We
suggest that some simple mechanisms and decision variables may be widely shared across
these domains.

Adopting as an illustration the widespread view that the brain houses (at least) two distinct
decision controllers (e.g., [4,11]), meta-optimization entails choices such as selecting the
controller that performs the optimization and allocating to it resources such as time [12–14], then
selecting the final outcome according to the preferences of that controller.
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Glossary
Central executive: a flexible system
regulating and coordinating cognitive
processes.
Decision controller: a system that
chooses actions, typically taking into
account environmental circumstances
(sensory inputs, state of the world,
etc.).
Ego depletion: an experience-
dependent impairment of
performance in tasks requiring self-
control or cognitive control, usually
observed after having performed a
preliminary demanding task.
Habitual controller: a decision
controller that maps a context or a
stimulus to a learned response after
extensive training (e.g., turn right at
the end of the block). A habitual
controller is more flexible than a
Pavlovian controller in that the
learned response can be arbitrary
instead of drawing from a limited
repertoire of innate responses.
Goal-directed controller: a
decision controller that evaluates
available actions in terms of a
prediction about their outcomes (e.g.,
turning right leads to the subway
station). Such evaluations are more
flexible than the choices of a habitual
controller, but may require
deliberation over multiple steps.
Learned helplessness: a change in
behavior induced by exposure to
situations in which an agent has no
control over outcomes. The agent no
longer attempts to cope with the
environment (e.g., accepting electric
shocks instead of escaping).
Marginal value theorem: a theorem
describing optimal behavior in certain
foraging problems. A forager
sequentially visiting depleting
resources (such as fruit trees) should
optimally seek a new resource when
the rate of return falls below the
opportunity cost of time spent
foraging there, which is given by the
overall average reward rate in the
environment.
Model-based control: a
computational theory for goal-
directed control in which options are
evaluated using a learned model of
the consequences of actions.
Model-free control: a decision
controller that relies on an
aggregated summary of past returns
of actions, without using a model of
the particular consequences of the
actions. Model-free control is a
Normative Meta-Decision Making
A typical laboratory model of self control asks how long you will keep your hand in unpleasantly
cold icewater [15]. Doing so might ensure that the experimenter pays you, but requires you to
constantly inhibit the urge to escape the noxious sensation by withdrawing your hand. The core
dilemma of this and many other control tasks is, in effect, whether to simplify the choice process.
Often, as here, this simplification consists of releasing an automatized, prepotent response (e.g.,
removing your hand from the icewater). Overriding such a default response to make any other,
more contextually appropriate choice (e.g., not removing your hand so as to eventually get the
payment) is what gives the situation a flavor of conflict and self-control.

In general, choosing among options involves computing and comparing their expected values.
This computation can be laborious (such as when contemplating different sets of moves in
chess), but may also be accomplished with shortcuts such as pre-wired defaults or frugal
heuristics [16]. Heavier resource use may (or may not) yield a more rewarding ultimate outcome,
but this comes at the cost of occupying resources that could otherwise have been used for
something else, potentially with its own rewards. The net value of selecting any decision process
is the value of the final outcome of that process, minus the cost of the resources used to reach a
decision (e.g., evaluation time [4,5,17]), and/or implement it (e.g., executive attention for
inhibiting a prepotent response [18]).

The crux of the matter is to figure out whether the benefits of a more laborious decision process are
worth the corollary resource costs [5,12], which in turn itself requires in some way estimating those
meta-decision variables using evidence from the current environmental context and reinforcement
history. Accordingly, as would be expected from a rational economic decision, the amount of
control that subjects choose to allocate in the laboratory is sensitive to variation in factors such as
reward [19] and to manipulations that induce beliefs about whether control is a limited or unlimited
resource [20]. In addition, recent findings have shown that cognitive control is deployed as would
be predicted by normative models of the investment of a costly resource: (i) monetary incentives
make people avoid cognitive ‘work’ less [7], (ii) allocation of time between a wage-earning
demanding task and a non-wage-earning easy task responds to wage manipulations as predicted
by labor supply theory [9], (iii) the subjective cost of cognitive effort can be measured in monetary
units through repeated economic choice experiments [2], and (iv) activity in cognitive control-
related brain areas reflects the integration of the costs and benefits of control [3]. We propose here
that the logic of balancing costly resources against better outcomes can be extended beyond
cognitive control to any context that involves the possibility of overriding a default response.

The Benefits of Control
Investing resources can lead to a better outcome in many contexts, for instance by inhibiting
maladaptive fear [21] or inappropriate prepotent responses [18], thus allowing more accurate
estimates of outcome value leading to ultimately more rewarding choices [22], or by keeping in
mind contextual information that helps to make responses both faster and more accurate [19].

A common theme across these examples is that choosing the most rewarding option depends
on accurately knowing the value of the candidates. Default actions such as reflexes or habits
represent rough approximations that are insensitive to changes in context. Computational
models of how resource use translates into gain (i) assume that a particular amount of resource
use buys better information, for instance by considering a larger set of possible outcomes or
attributes or by allowing a higher number of computational operations [4,16,23], (ii) specify
mechanisms by which investing resources may achieve more accurate responses [24,25], (iii)
describe how search in complex cognitive representations could secure a better outcome
[22,26], or (iv) use information theory to determine how much control should be required to
supply the information that justifies overriding the default response [27].
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proposed computational theory of
habitual control.
Pavlovian controller: a decision
controller that evokes innate
responses to stimuli that are
predictive of biologically important
consequences (such as salivating to
a bell that predicts food).
Sample complexity: the number of
examples an algorithm needs to
obtain a satisfactory estimate of a
quantity of interest (e.g., how many
times does a customer need to go to
a restaurant to provide a reliable
rating?).
In this way, the dilemma of whether to override an automatic response is analogous to the
familiar explore–exploit tradeoff [28] where subjects must figure out the value of different
options by sampling them over trials (exploration), and balance this sampling against earning
the most reward by choosing the options that seem best on the basis of current knowledge
(exploitation). The benefit of exploration is the value of the information gained in terms of
enabling more rewarding choices on future trials [29,30], and the limited resource is the set of
available trials.

More quantitatively mapping the functional relationship between resource use and outcome
value [31] is difficult: beyond the perennial problem of identifying the subjective reward of an
outcome [32–35], it is hard to quantify the amount of resources that were mobilized to secure it.
Current empirical strategies include metabolic measures such as expired gas analysis [36],
behavioral economic procedures that gauge how much money subjects need to be paid to
choose a demanding task over an easy one [2], and direct brain function measurements
contrasting activity in regions of the prefrontal cortex believed to subserve executive functions
during easy and hard decision tasks [6].

The Costs of Control
Viewing failure to exert control as irrational often focuses solely on the gain side of a more costly
decision, while overlooking the cost [37].

Although cognitive resources do have intrinsic costs (e.g., the metabolic cost of firing spikes) – as
the old economic adage goes, all costs are ultimately opportunity costs. In other words, the cost
equates to what one could have obtained by spending the same resource some other way
(Box 1). Thus the crucial computations of resource cost usually hinge on comparing the values
that could be obtained from different possible uses. Using a resource is costly if this involves
foregoing another beneficial use, and cheap if it does not (Figure 1).

The importance of opportunity costs has been recognized in several contexts such as foraging
[38], free operant responding [39], temporal discounting [40,41], goal-directed versus habitual
control [4], action sequence chunking [42], and cognitive effort [1]. In the former cases, such as
foraging, the principle of lost opportunity is physical: one cannot eat from two bushes at once.
Less obviously, cognitive resources that can only be used by one process at a time, such as
attention or working memory, pose analogous time allocation problems. Research in all these
domains generally pits one option against another within a single context (e.g., foraging in the
same patch vs leaving to look for a better one). However, the limited resources at stake are
Box 1. Opportunity Costs and Average Reward

Opportunity costs arise when multiple mutually-exclusive actions are available at a given moment. For example, a child
has $2 to purchase an ice cream cone. That money could purchase several different cones each of which cost $2, but
purchasing one necessarily means not purchasing another. Thus the child should consider not only what they might
purchase but what they might not. Calculating opportunity costs can be computationally daunting, especially if the option
space is large. In our example, this might arise if the child considers not only ice cream cones but also other confections.
To get around this challenge of exhaustively representing every possible alternative, for problems that involve the
allocation of time one can simplify the computation by maintaining a running average of rewards received over time – the
average reward rate. That average reward rate is an estimate of the opportunity cost of time [39]. If an action has a greater
value than the average reward rate, then it is ‘worth’ taking (a decision rule formalized in the ‘marginal value theorem’

[38]) whereas, conversely, actions which deliver worse-than average returns are not worth the time they take.

In some particular scenarios, such as animal foraging, this simple comparison rule is optimal; in many others it may be a
reasonable approximation. In particular, this decision rule is myopic: it does not consider the possibility that investing
resources now (e.g., training an underperforming employee) might carry enhanced returns later, and it considers
investment as all-or-nothing for some period (measuring what one could earn overall during that period, and not the
particular value of occupying e.g., some slot of a working memory store).
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Figure 1. Opportunity Cost. The figure illustrates opportunity costs in a forced-choice task in six trials in which the agent
can choose between a cheap, low-value habitual response, and a more-costly, more-valuable controlled response. Note
that the six green boxes (Control) finish at a higher value but also require longer time than the six blue boxes (Habit). The
question to the organism is which set of boxes (controllers for action) to choose – the green or the blue? To answer this
question we must also know the opportunity cost of time. The opportunity cost captures what else could be done after the
task is completed, and could be estimated as the long-term average reward in the environment (depicted here as an ‘other’
action). In the low opportunity cost case, control buys more additional value than the current average reward (green versus
black arrow), and control is thus advantageous despite the additional time it takes. In the high opportunity cost case, the
foregone other action would be more valuable than the additional value attained with control, and habit should therefore be
preferred (such that the 6 actions are completed sooner, and the ‘other’ action can be performed instead).
shared across domains: executive function and even lower-level modules such as the visual
system are ubiquitously useful. Thus, competition is not only between tasks directly offered by
the experimenter but also with any latent options such as daydreaming, planning lunch, or
worrying about how to make ends meet if money is scarce [43].

This type of reasoning implies that the costs of control ultimately arise from competitive allocation
of cognitive resources that are shared across multiple possible uses, but can only be used for
one at a time [1]. These shared and limited resources include executive resources such as
working memory, attention, and the central executive [44,45] (Box 2). Dependence on these
resources makes many processes vulnerable to contexts that affect their capacity. For instance,
stress imposes a strain on executive functioning, and thereby causes emotion regulation to
break down [46] and deliberative, model-based choices to weaken [47]. Tasks from many
different areas involving executive function have been shown to cross-influence one another
[48,49], and cross-predict performance [50,51].
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Box 2. Limits of Executive Function

The existence of a shared, multi-purpose limited central executive has been hypothesized ever since early experimental
work demonstrated limits on the number of simultaneous executive tasks that could be performed without interference
between them [44,98]. Executive functions enable flexible adaptation to changes in the environment and motivation
switching [99], support reactive, proactive, and counterfactual inferences [100], and their engagement has been
suggested to correlate with the subjective feeling of mental effort [25]. The central idea is that there is a limit to the
number of items that can be attended to, maintained, or cognitively manipulated at any given time, making executive
function by definition a limited resource. Thus, the allocation of executive function to a given task almost always involves
opportunity costs (Box 1).
Balancing the Costs and Benefits of Control
Figuring out the exact costs and benefits of control requires difficult computations and knowl-
edge of all the contingencies of the task at hand. This raises a problem of infinite regress,
particularly because such meta-decisions themselves are supposed to assess whether or not it
is worthwhile to simplify decision computations.

One shortcut is to suppose that the brain might use rough quantities that approximately capture
the costs and benefits of control. Two candidates for such approximate meta-decision variables
seem broadly applicable: the average reward rate and controllability.

When devoting one's shared resources to a task for a period of time, the opportunity cost of that
time is given in many settings either exactly or approximately by the long-term average reward
rate [39]. This represents the amount of reward one would expect to earn, on average per unit of
time, and thus may be a reasonable proxy or bound on the reward foregone by occupying
reward-relevant resources for that time. When the world is richer, time is more costly. The
average reward as opportunity cost has been proposed to govern decisions about the temporal
allocation of resources in physical effort and vigor [39], prey selection [52], patch foraging [53],
deliberation [4], action sequencing [42], and time discounting [40]. Thus the brain may track the
average reward rate and apply it across many types of decisions, including meta-decisions. The
logic of this coarse measure is to treat allocation as all-or-nothing – thereby equating the cost of
occupying the resource over time to the overall cost of the time itself. For this reason, it does not
apply directly to more granular resource allocation decisions, such as how much of some graded
resource (e.g., working memory) is to be occupied, or whether to spend some resource that
improves decisions while also speeding them up. Even in these cases, it may still provide a useful
proxy provided that the contribution of individual resources to reward uniformly scales up as the
overall reward increases.

The benefits of control, meanwhile, quantify how much more reward would be gained by
optimizing more carefully. A rough proxy for this is given by various measures of the controllability
of the environment [23]. There are several ways of quantifying controllability, all related to the
extent to which one's actions determine one's outcomes. In this context, controllability can
capture the advantage of a carefully considered action over a random one – for example, the
difference between the reward for the best action versus a randomly chosen action (Figure 2). If
this difference is small, it tends to be a waste to spend resources optimizing: one might as well
just choose randomly or use a default response. Again, it has been argued that the brain tracks
this quantity and uses it to weigh decisions, as in depression and learned helplessness [54],
where repeated experience with uncontrollable situations leads to subsequent passivity in other
tasks. Altogether, a cartoon summary of this shortcut would be:

Net benefit of control � Controllability – Average reward

More generally, we would expect the willingness to exert control or effort, across many domains,
to increase with controllability but decrease with average reward. Of course, these rough proxies
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Figure 2. Controllability. A simple mea-
sure of controllability is the difference
between the values of the best and aver-
age achievable outcomes. The figure illus-
trates the values associated with a sample
of observed actions. Values are similar in
the low controllability case, but, in the high
controllability case, careful choice optimi-
zation can lead to a much better outcome
because the best value is further removed
from the typical case.
might be refined with decision variables more suited to particular situations or contexts, for which
these more general quantities might serve as priors. For instance, it appears that uncertainty
about the value of a particular action (over and above controllability more generally) affects meta-
decisions in situations such as exploration [30] and habits [22]. Indeed, while we sketch here a
strategy of identifying situations in which control is generally more advantageous or disadvan-
tageous, other theoretical work in psychology envisages that the brain chooses among approxi-
mate computation strategies by learning the empirical performance of particular heuristics in
particular situations [5,16]. These two approaches may well be complementary.

The general point is that meta-decision variables of this type represent broad features of the
environment that an organism can easily estimate from experience (e.g., by averaging received
rewards) and use to guide the allocation of control, generalizing across many situations or tasks.
This suggests accounts for a family of phenomena, including ego depletion [1] and learned
helplessness [54], in which experience with environmental statistics drives changes in later
control allocation. Any change in the decision context affecting either the expected value of
control or the expected cost of resources may change the decision process and the way its
parameters are set. For instance, if two options differ in their resource requirement, a preference
reversal may be caused by a change in the estimated resource opportunity cost even if the true
opportunity cost has in fact stayed the same.

Examining the expected benefits and costs of resource investment sheds light on four related
types of puzzles. First, why are there controllers and motivational states characterized by low
resource use (e.g., the Pavlovian controller [55], fatigue [56,57], depression [41,58])? Second,
what should guide arbitration between different decision styles (e.g., model-based versus
model-free control [22,59–61], impulsive versus controlled [18])? Third, how should organ-
isms trade-off resource versus performance within a given process (e.g., time and attention
devoted to an executive task [9], time taken to make a choice [4])? Finally, how and why should
decision strategies change depending on previous experience?

Three Example Domains of Meta-Decision Making
Goal-Directed versus Habitual Decision Making
Probably the best understood example of rational meta-decision making, empirically and
theoretically, is for decisions about whether to deliberate. The expected value of an action
can be retrieved from aggregate past experience or worked out more prospectively by enu-
merating the consequences of the action. These two strategies are termed model-free and
model-based decision-making, and are closely related to the categories of habitual and goal-
directed responding from behavioral psychology [22,59–61]. For example, in a typical laboratory
situation, a rodent presses a lever for some food. If the animal has been overtrained, lever-
pressing can become a habit; that is, a type of learned automatic response directly associated to
context, which bypasses the association with the outcome of food and is therefore no longer
sensitive to desire for food. Conversely, model-based deliberation relies on identifying outcomes
and estimating their values. These two types of control can be distinguished by testing whether
Trends in Cognitive Sciences, November 2015, Vol. 19, No. 11 705



the animal will still press the lever when the food is unwanted, such as after an aversion has been
induced by pairing it with illness.

We can view perseverative lever-pressing in this case as reflecting a meta-decision to engage
the habit: in other words that the extra cost of extended model-based deliberation was not
expected to be offset by sufficient benefit beyond that provided by the habitual response.

On the benefit side, evaluating an action in a model-based fashion is more accurate in terms of
what computer scientists call sample complexity: it uses all available data in near-optimal
fashion [22]. The most obvious cost of constructing model-based values is time, because values
have to be estimated on the fly [62]. Model-based values could be obtained by searching a tree
of the possible consequences of action sequences [22], where the order in which possibilities
are examined may itself also be optimized according to the expected value [26]. Experimental
evidence in humans suggests that deliberatively constructing value requires time and attention
[63–65], and that many different quantities capturing outcome statistics are computed in
different parts of the brain [66].

Model-free choices (‘habits’), conversely, are fast but sloppy. They represent learned automatic
responses which can simply be triggered without further computation. As in the case of sated
rats working for food, this lack of deliberation can lead to errors.

Normative models of arbitration between habitual and goal-directed controllers have been
proposed very much along the lines of our general sketch above. In particular, it has been
suggested that the brain employs average reward rate as an estimate of the opportunity cost of
time, and compares it to the expected benefit of more accurate value estimates to determine
whether a goal-directed or habitual controller is optimal [4,23]. This model explains a great deal
of data about the circumstances under which either type of control dominates, such as the
emergence of habits with overtraining: once enough samples have been seen, model-free
responses are expected to be well-calibrated and the reduced accuracy gap with model-based
ones no longer (in expectation) justifies the extra deliberation costs.

Subjective Effort and Control
Although the work reviewed above concerns the time devoted to value estimation, an additional
cost of controlled action not yet considered is the ongoing opportunity costs due to occupying
executive resources needed to execute a planned course of action. This happens, for instance, if
an action requires inhibiting a prepotent response in an ongoing manner, as with holding one's
hand in icewater or engaging in a sustained way with onerous work [18,67].

Recognizing this has led to a model of arbitration between controlled or effortful versus default
responses [1] that is otherwise formally fairly parallel to models of arbitration between goal-
directed and habitual responses [4]. Another appeal of this model is that it may help to explain
systematic changes over time in subjects’ allocation of control (e.g., so-called ‘ego depletion’
[48]). In ego depletion experiments, subject performance on a control-demanding probe task is
measured following some initial, usually different, ‘depleting’ task. Typically, performance on a
variety of probes (from icewater endurance to anagram unscrambling) is reduced if the initial task
itself demanded control, as though such tasks require some common (but unidentified) deplet-
ing resource. A rational meta-decision account may explain this phenomenon via experience-
dependent learning about cost or benefit estimates, without appealing to an unidentified
depleting resource, as in the more traditional strength model of self-control [68,69].

That said, compared to operant choice in rodents, in many human cognitive effort experiments
the costs and benefits of controlled action are less objectively manipulated and harder to
706 Trends in Cognitive Sciences, November 2015, Vol. 19, No. 11



quantify. Because objective performance-dependent payments are often not given, under-
standing the benefits often comes down to assumptions about the demand characteristics of
complying with the requests of the experimenter. The estimation of the opportunity cost of
executive resources is also rather quantitatively unconstrained in this setting, as is how either of
these quantities would interact with experience to give rise to the phenomenology of ego-
depletion. In principle, ongoing learning about controllability, or average rewards, or both, might
lead to ego depletion phenomena. The average reward rate as the opportunity cost of time is
only directly applicable if the decision to engage is all-or-nothing, for example whether to
perform a task versus daydream or quit. In tasks where the agent can decide how much to
apply herself (e.g., focusing hard versus half-heartedly on solving puzzles), it might be possible
to extend this idea to track the average reward rate obtained per unit of executive resource use.
Quantities of this type may be related to theories of learned industriousness and self-efficacy
[70–72].

Cognitive Emotion Regulation and the Pavlovian Controller
Another example of using executive resources to inhibit a prepotent response is cognitive
emotion regulation [21,73,74]. On the benefit side, cognitive emotion regulation can make
behavior more adaptive [75]. As for cost, it appears to depend on similar executive circuits as the
other behaviors discussed here [51,75–77].

Inhibiting Pavlovian responses is a closely related example. Many examples of self-control in the
more colloquial sense, such as inhibiting the consumption of unhealthy food or impulsivity in the
‘marshmallow test’, involve suppressing Pavlovian response tendencies such as that to
approach and consume appetitive stimuli [55]. The link between the inhibition of Pavlovian
responses and the balance between model-based and model-free learning may not be so
surprising: Pavlovian responses are analogous to habitual ones in that both are stimulus-
triggered responses, although the way they are shaped by learning differs. In particular,
Pavlovian responses are innate responses to primary stimuli, such as salivation in the presence
of food or freezing in the present of threat. Following learning, these responses come to be
triggered anticipatorily by stimuli that are predictive of the primary stimuli, such as a bell
announcing food or threat. In principle, arbitration between goal-directed and habitual respond-
ing could naturally extend to arbitration between goal-directed and Pavlovian responding [55]
where the same additional costs in terms of time and executive function are required to override
the default response when it may be maladaptive [78–81]. This could give a normative flavor to
the hitherto more descriptive computational models of Pavlovian/instrumental competition that
have been proposed [55,80,82].

Fatigue and Cognitive Control
Some theories of fatigue, defined as unwanted changes in performance owing to continued
activity, propose that the sensation of fatigue indicates rising conflict between current and
competing goals, and therefore tracks opportunity costs of executive resource use [56,57]. A
related proposal views self-control erosion as stemming from a similar shift of motivation [83,84]
that could also cleanly map to an increase in the estimated cost of the resource. However, the
timescales involved are very different (hours for fatigue [85] versus minutes for self-control tasks
[48]) and the motivational effects of fatigue and self-control exertion may be independent [86].

Here again, the main puzzle that needs to be addressed is why either the opportunity cost of
executive resources should increase with time on task, or the benefit of resources should decrease.

Estimating the Benefit of Control: Controllability and Learned Helplessness
Early work made a distinction between ‘resource-limited’ and ‘data-limited’ response functions
to resource investment, according to whether a task responds favorably to increased resource
Trends in Cognitive Sciences, November 2015, Vol. 19, No. 11 707



Outstanding Questions
Why should the perceived costs or
benefits change over the course of
self-control experiments, giving rise to
fatigue, learned helplessness, or ego
depletion effects?

How is the expected reward differential
between competing controllers
estimated?

Why is there a serial limited-capacity
executive?
allocation [31,87]. In the data-limited regime, no resource should be applied, regardless of its
current cost. How can the agent estimate the return on resource investment – that is, the value of
control [3]?

As we suggested, [4,28,30] this could be identified by estimating the amount of controllability in
the environment. In fact, controllability and a closely related concept, autonomy, have been
shown to improve self-control performance [15] and to mitigate the worsening of self-control
performance after performing a demanding task [88–90]. This effect is strikingly reminiscent of
early findings that the perception of controllability alleviates the deleterious effect of stressors on
performance [91,92], and these considerations are consistent with the hypothesis that the
expected benefit of investing more resources into control is, at least in part, estimated by
assessing the controllability of the environment [54].

Finally, controllability is most typically associated with literature on ‘learned helplessness’
experiments, where exposure to uncontrollable outcomes causes various degradations in
subsequent decisions [58]. Learned helplessness has long been proposed as an animal model
of depression; it has also recently been suggested that the symptoms of actual depression might
arise, in part, from abnormal estimates of meta-decision variables such as those we consider
here, which, via biasing decision control, could in turn produce characteristic disordered
behavior such as anergia [93].

Learned helplessness also bears a resemblance to ego depletion in that both are experience-
dependent changes in controlled behavior that generalize broadly across tasks. Indeed, many of
the tasks used to probe learned helplessness and the ego depletion effect on self-control are
similar – for example, measuring persistence on problem-solving or Stroop tasks [48,58,92] –

potentially suggesting a common mechanism. Strengthening the contention that controllability
may be a shared mechanism, correlations have been observed between emotion regulation,
executive function, impulse control, and perceptions of controllability [94]; neuroimaging has
shown that prefrontal activity (presumably reflecting executive function) can be modulated by
controllability [95,96]; and perceptions of controllability may explain variability in the exploration–
exploitation tradeoff [97].

Concluding Remarks
Many decision contexts involve a higher-order automaticity tradeoff that requires deciding what
amount of resources to invest into the decision itself. We have suggested that analogous
considerations arise in several different experimental circumstances broadly related to self-
control, and that emerging theories and results in many of these areas reflect strikingly similar
mechanisms for rational cost–benefit tradeoffs, although important outstanding questions
remain (see Outstanding Questions). Similar ideas may shed light beyond the resolution of
particular self-control situations, to why they arise in the first place. In particular, one can extend
the rational analysis up a further level to meta-meta-decisions about the nature of controllers.
These would entail decisions such as determining under what circumstances to program an
automatic action (and which one), because these can also be optimized. Pavlovian and habitual
responses could be the outcome of such higher-level optimizations, in one case via evolution
and the other via learning over days or weeks. Exploring this even higher level of decision could
yield further insights into the vast repertoire of observed decision processes and the control
principles governing their interactions.
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