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In their recent paper (1), Peterson et al. present a promising new approach examining how 
humans make decisions by combining large-scale choice data with machine learning algorithms. 
This approach capitalizes on the function approximation power of deep neural networks to 
examine psychologically constrained - and thus interpretable - models. 

While conceptually powerful, this approach sidesteps a different, fundamental constraint on 
human decision-making: biological constraints. Biological limitations have proven critical in 
sensory systems, where efficient coding strategies directly shape neural and perceptual responses 
(2-4), principles which may also apply to valuation and choice (5, 6). For example, unlike 
models operating on option attributes (1), neural systems only see imprecise, biased, and 
inferentially-derived representations of these inputs (7, 8). Additionally, deep neural networks 
exhibit features like adversarial perturbations highly uncharacteristic of human behavior (9), 
likely reflecting fundamental architectural differences between artificial and biological networks 
(10). If choosers optimize over both behavior and biological constraints, actual strategies may 
differ from the best-fitting product of biologically-unconstrained algorithms, potentially even 
falling outside the search space defined by psychological considerations alone. 

Biological constraints also imply that individual choosers adapt to their unique context, as 
evident in two major remaining challenges. First is the impact of sequential effects in risky 
decision-making. Though theories have long asserted that choices are reference-dependent (11), 
recent research has begun to characterize how recent values (12, 13) and outcomes (14, 15) 
affect subsequent risk-taking from short (13, 15) to long timescales (12, 14). Second is the role 
of large individual differences in decision-making, addressed briefly in the supplemental material 
of Peterson et al. Analytical approaches on the scale of individuals must complement insights 
from larger-scale, aggregate analysis. 

The powerful, data-driven tools leveraged by Peterson et al promise to significantly 
accelerate theoretical development in decision-making and beyond. However, this approach must 
ultimately engage directly with biological constraints and their consequences, and be used in 
conjunction with more granular analytical approaches for maximum scientific impact. 
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